Brain stars take the lead during critical periods of early postnatal brain development: relevance of astrocytes in health and mental disorders

Brain stars take the lead during critical periods of early postnatal brain development: relevance of astrocytes in health and mental disorders
  • Bandeira F, Lent R, Herculano-Houzel S. Changing numbers of neuronal and non-neuronal cells underlie postnatal brain growth in the rat. Proc Natl Acad Sci. 2009;106:14108–13.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Khakh BS, Sofroniew MV. Diversity of astrocyte functions and phenotypes in neural circuits. Nat Neurosci. 2015;18:942–52.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Semyanov A, Verkhratsky A. Astrocytic processes: from tripartite synapses to the active milieu. Trends Neurosci. 2021;44:781–92.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Magistretti PJ, Allaman I. Lactate in the brain: from metabolic end-product to signalling molecule. Nat Rev Neurosci. 2018;19:235–49.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Allen NJ, Eroglu C. Cell Biology of Astrocyte-Synapse Interactions. Neuron. 2017;96:697–708.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bosworth AP, Allen NJ. The diverse actions of astrocytes during synaptic development. Curr Opin Neurobiol. 2017;47:38–43.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Faulkner JR, Herrmann JE, Woo MJ, Tansey KE, Doan NB, Sofroniew MV. Reactive Astrocytes Protect Tissue and Preserve Function after Spinal Cord Injury. J Neurosci. 2004;24:2143–55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Iram T, Frenkel D. Targeting the Role of Astrocytes in the Progression of Alzheimers Disease. Curr Signal Transduct Ther. 2012;7:20–7.

    Article 
    CAS 

    Google Scholar 

  • Molofsky AV, Kelley KW, Tsai HH, Redmond SA, Chang SM, Madireddy L, et al. Astrocyte-encoded positional cues maintain sensorimotor circuit integrity. Nature 2014;509:189–94.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cabezas R, Ávila M, Gonzalez J, El-Bachá RS, Báez E, García-Segura LM, et al. Astrocytic modulation of blood brain barrier: perspectives on Parkinson´s disease. Front Cell Neurosci. 2014;8. Available from: http://journal.frontiersin.org/article/10.3389/fncel.2014.00211/abstract.

  • Boulay AC, Saubaméa B, Adam N, Chasseigneaux S, Mazaré N, Gilbert A, et al. Translation in astrocyte distal processes sets molecular heterogeneity at the gliovascular interface. Cell Discov. 2017;3:17005.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alvarez JI, Katayama T, Prat A. Glial influence on the blood brain barrier. Glia. 2013;61:1939–58.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Eroglu C, Barres BA. Regulation of synaptic connectivity by glia. Nature. 2010;468:223–31.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vasile F, Dossi E, Rouach N. Human astrocytes: structure and functions in the healthy brain. Brain Struct Funct. 2017;222:2017–29.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Oberheim NA, Takano T, Han X, He W, Lin JHC, Wang F, et al. Uniquely Hominid Features of Adult Human Astrocytes. J Neurosci. 2009;29:3276–87.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mohn TC, Koob AO. Adult Astrogenesis and the Etiology of Cortical Neurodegeneration. J Exp Neurosci. 2015;9s2:JEN.S25520.

    Article 

    Google Scholar 

  • Verkhratsky A, Nedergaard M. Physiology of Astroglia. Physiol Rev. 2018;98:239–389.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Verkhratsky A, Bush N, Nedergaard M, Butt A. The Special Case of Human Astrocytes. Neuroglia. 2018;1:21–9.

    Article 

    Google Scholar 

  • Götz M, Huttner WB. The cell biology of neurogenesis. Nat Rev Mol Cell Biol. 2005;6:777–88.

    Article 
    PubMed 

    Google Scholar 

  • Takouda J, Katada S, Nakashima K. Emerging mechanisms underlying astrogenesis in the developing mammalian brain. Proc Jpn Acad Ser B 2017;93:386–98.

    Article 
    CAS 

    Google Scholar 

  • Ever L, Gaiano N. Radial ‘glial’ progenitors: neurogenesis and signaling. Curr Opin Neurobiol. 2005;15:29–33.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhou CJ, Zhao C, Pleasure SJ. Wnt Signaling Mutants Have Decreased Dentate Granule Cell Production and Radial Glial Scaffolding Abnormalities. J Neurosci. 2004;24:121–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rowitch DH, Kriegstein AR. Developmental genetics of vertebrate glial–cell specification. Nature 2010;468:214–22.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Eze UC, Bhaduri A, Haeussler M, Nowakowski TJ, Kriegstein AR. Single-cell atlas of early human brain development highlights heterogeneity of human neuroepithelial cells and early radial glia. Nat Neurosci. 2021;24:584–94.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pollen AA, Nowakowski TJ, Chen J, Retallack H, Sandoval-Espinosa C, Nicholas CR, et al. Molecular Identity of Human Outer Radial Glia during Cortical Development. Cell. 2015;163:55–67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miller FD, Gauthier AS. Timing is everything: making neurons versus glia in the developing cortex. Neuron. 2007;54:357–69.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Morrow T, Song MR, Ghosh A. Sequential specification of neurons and glia by developmentally regulated extracellular factors. Dev Camb Engl. 2001;128:3585–94.

    CAS 

    Google Scholar 

  • Ge WP, Miyawaki A, Gage FH, Jan YN, Jan LY. Local generation of glia is a major astrocyte source in postnatal cortex. Nature. 2012;484:376–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • De Zeeuw CI, Hoogland TM. Reappraisal of Bergmann glial cells as modulators of cerebellar circuit function. Front Cell Neurosci. 2015;9. Available from: http://journal.frontiersin.org/Article/10.3389/fncel.2015.00246/abstract.

  • Güngör Kobat S. Importance of Müller Cells. Beyoglu Eye J. 2020; Available from: http://beyoglueye.com/jvi.aspx?un=BEJ-28290&volume=.

  • Choi BH, Lapham LW. Evolution of Bergman glia in developing human fetal cerebellum: A Golgi, electron microscopic and immunofluorescent study. Brain Res. 1980;190:369–83.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Reichenbach A, Bringmann A. Glia of the human retina. Glia. 2020;68:768–96.

    Article 
    PubMed 

    Google Scholar 

  • Martinotti F. Contributo allo studio della corteccia cerebrale, ed all ́origine centrale dei nervi. Fratelli Bocca; 1889.

  • Andriezen WL. The Neuroglia Elements in the Human Brain. BMJ. 1893;2:227–30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Retzius G. Die neuroglia des Gehirns beim Menschen und bei Saeugethieren. Jena: Chemie; 1894.

    Google Scholar 

  • Colombo JA, Yáñez A, Puissant V, Lipina S. Long, interlaminar astroglial cell processes in the cortex of adult monkeys. J Neurosci Res. 1995;40:551–6.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Colombo JA. Interlaminar Astroglial Processes in the Cerebral Cortex of Adult Monkeys But Not of Adult Rats. Cells Tissues Organs. 1996;155:57–62.

    Article 
    CAS 

    Google Scholar 

  • Colombo JA, Yáñez A, Lipina SJ. Interlaminar astroglial processes in the cerebral cortex of non human primates: response to injury. J Hirnforsch. 1997;38:503–12.

    CAS 
    PubMed 

    Google Scholar 

  • Colombo JA, Reisin HD. Interlaminar astroglia of the cerebral cortex: a marker of the primate brain. Brain Res. 2004;1006:126–31.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Falcone C, Penna E, Hong T, Tarantal AF, Hof PR, Hopkins WD, et al. Cortical Interlaminar Astrocytes Are Generated Prenatally, Mature Postnatally, and Express Unique Markers in Human and Nonhuman Primates. Cereb Cortex. 2021;31:379–95.

    Article 
    PubMed 

    Google Scholar 

  • Falcone C, Martínez-Cerdeño V. Astrocyte evolution and human specificity. Neural Regen Res. 2023;18:131.

    Article 
    PubMed 

    Google Scholar 

  • Falcone C, McBride EL, Hopkins WD, Hof PR, Manger PR, Sherwood CC, et al. Redefining varicose projection astrocytes in primates. Glia. 2022;70:145–54.

    Article 
    PubMed 

    Google Scholar 

  • Han X, Chen M, Wang F, Windrem M, Wang S, Shanz S, et al. Forebrain Engraftment by Human Glial Progenitor Cells Enhances Synaptic Plasticity and Learning in Adult Mice. Cell Stem Cell. 2013;12:342–53.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Azevedo FAC, Carvalho LRB, Grinberg LT, Farfel JM, Ferretti REL, Leite REP, et al. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol. 2009;513:532–41.

    Article 
    PubMed 

    Google Scholar 

  • Falcone C. Evolution of astrocytes: From invertebrates to vertebrates. Front Cell Dev Biol. 2022;10:931311.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Degl’Innocenti E, Dell’Anno MT. Human and mouse cortical astrocytes: a comparative view from development to morphological and functional characterization. Front Neuroanat. 2023;17:1130729.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Namba T, Huttner WB. Neural progenitor cells and their role in the development and evolutionary expansion of the neocortex. WIREs Dev Biol. 2017;6:e256.

    Article 

    Google Scholar 

  • Shinmyo Y, Saito K, Hamabe-Horiike T, Kameya N, Ando A, Kawasaki K, et al. Localized astrogenesis regulates gyrification of the cerebral cortex. Sci Adv. 2022;8:eabi5209.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zilles K, Palomero-Gallagher N, Amunts K. Development of cortical folding during evolution and ontogeny. Trends Neurosci. 2013;36:275–84.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Farmer WT, Murai K. Resolving Astrocyte Heterogeneity in the CNS. Front Cell Neurosci. 2017;11:300.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Holt MG. Astrocyte heterogeneity and interactions with local neural circuits. Essays Biochem. 2023;67:93–106.

  • Miller SJ. Astrocyte Heterogeneity in the Adult Central Nervous System. Front Cell Neurosci. 2018;12:401.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Oliveria JP, Li ZJ. critical role of astrogenesis and neurodevelopment in Fragile X Syndrome and Rett Syndrome. McMaster Univ Med J. 2020;17. Available from: https://journals.mcmaster.ca/mumj/article/view/2338.

  • Kanski R, Van Strien ME, Van Tijn P, Hol EM. A star is born: new insights into the mechanism of astrogenesis. Cell Mol Life Sci. 2014;71:433–47.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yoon K, Nery S, Rutlin ML, Radtke F, Fishell G, Gaiano N. Fibroblast Growth Factor Receptor Signaling Promotes Radial Glial Identity and Interacts with Notch1 Signaling in Telencephalic Progenitors. J Neurosci. 2004;24:9497–506.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fan G, Martinowich K, Chin MH, He F, Fouse SD, Hutnick L, et al. DNA methylation controls the timing of astrogliogenesis through regulation of JAK-STAT signaling. Development. 2005;132:3345–56.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sun Y, Nadal-Vicens M, Misono S, Lin MZ, Zubiaga A, Hua X, et al. Neurogenin Promotes Neurogenesis and Inhibits Glial Differentiation by Independent Mechanisms. Cell. 2001;104:365–76.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bonni A, Sun Y, Nadal-Vicens M, Bhatt A, Frank DA, Rozovsky I, et al. Regulation of Gliogenesis in the Central Nervous System by the JAK-STAT Signaling Pathway. Science. 1997;278:477–83.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nieto M, Schuurmans C, Britz O, Guillemot F. Neural bHLH Genes Control the Neuronal versus Glial Fate Decision in Cortical Progenitors. Neuron. 2001;29:401–13.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang Y, Pak C, Han Y, Ahlenius H, Zhang Z, Chanda S, et al. Rapid Single-Step Induction of Functional Neurons from Human Pluripotent Stem Cells. Neuron. 2013;78:785–98.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang N, Chanda S, Marro S, Ng YH, Janas JA, Haag D, et al. Generation of pure GABAergic neurons by transcription factor programming. Nat Methods. 2017;14:621–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Südhof TC, Wernig M. Direct conversion of fibroblasts to functional neurons by defined factors. Nature. 2010;463:1035–41.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hatakeyama J, Bessho Y, Katoh K, Ookawara S, Fujioka M, Guillemot F, et al. Hes genes regulate size, shape and histogenesis of the nervous system by control of the timing of neural stem cell differentiation. Development. 2004;131:5539–50.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mizutani KI, Saito T. Progenitors resume generating neurons after temporary inhibition of neurogenesis by Notch activation in the mammalian cerebral cortex. Development. 2005;132:1295–304.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hoch RV, Rubenstein JLR, Pleasure S. Genes and signaling events that establish regional patterning of the mammalian forebrain. Semin Cell Dev Biol. 2009;20:378–86.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Leone DP, Srinivasan K, Chen B, Alcamo E, McConnell SK. The determination of projection neuron identity in the developing cerebral cortex. Curr Opin Neurobiol. 2008;18:28–35.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guillemot F. Cellular and molecular control of neurogenesis in the mammalian telencephalon. Curr Opin Cell Biol. 2005;17:639–47.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • He F, Ge W, Martinowich K, Becker-Catania S, Coskun V, Zhu W, et al. A positive autoregulatory loop of Jak-STAT signaling controls the onset of astrogliogenesis. Nat Neurosci. 2005;8:616–25.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tomita K. Mammalian achaete-scute and atonal homologs regulate neuronal versus glial fate determination in the central nervous system. EMBO J. 2000;19:5460–72.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Llorca A, Deogracias R. Origin, Development, and Synaptogenesis of Cortical Interneurons. Front Neurosci. 2022;16:929469.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Styr B, Slutsky I. Imbalance between firing homeostasis and synaptic plasticity drives early-phase Alzheimer’s disease. Nat Neurosci. 2018;21:463–73.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rubenstein JLR, Merzenich MM. Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav. 2003;2:255–67.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Foss-Feig JH, Adkinson BD, Ji JL, Yang G, Srihari VH, McPartland JC, et al. Searching for Cross-Diagnostic Convergence: Neural Mechanisms Governing Excitation and Inhibition Balance in Schizophrenia and Autism Spectrum Disorders. Biol Psychiatry. 2017;81:848–61.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Barnabé-Heider F, Wasylnka JA, Fernandes KJL, Porsche C, Sendtner M, Kaplan DR, et al. Evidence that Embryonic Neurons Regulate the Onset of Cortical Gliogenesis via Cardiotrophin-1. Neuron. 2005;48:253–65.

    Article 
    PubMed 

    Google Scholar 

  • Farmer WT, Abrahamsson T, Chierzi S, Lui C, Zaelzer C, Jones EV, et al. Neurons diversify astrocytes in the adult brain through sonic hedgehog signaling. Science. 2016;351:849–54.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Voss AJ, Lanjewar SN, Sampson MM, King A, Hill EJ, Sing A, et al. Identification of ligand-receptor pairs that drive human astrocyte development. Nat Neurosci. 2023;26:1339–51.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bayraktar OA, Bartels T, Holmqvist S, Kleshchevnikov V, Martirosyan A, Polioudakis D, et al. Astrocyte layers in the mammalian cerebral cortex revealed by a single-cell in situ transcriptomic map. Nat Neurosci. 2020;23:500–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Berardi N, Pizzorusso T, Maffei L. Critical periods during sensory development. Curr Opin Neurobiol. 2000;10:138–45.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chugani HT. A Critical Period of Brain Development: Studies of Cerebral Glucose Utilization with PET. Prev Med. 1998;27:184–8.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sengpiel F. The critical period. Curr Biol. 2007;17:R742–3.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Knudsen EI. Sensitive Periods in the Development of the Brain and Behavior. J Cogn Neurosci. 2004;16:1412–25.

    Article 
    PubMed 

    Google Scholar 

  • Nelson CA, Gabard-Durnam LJ. Early Adversity and Critical Periods: Neurodevelopmental Consequences of Violating the Expectable Environment. Trends Neurosci. 2020;43:133–43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Virolainen SJ, VonHandorf A. Viel KCMF, Weirauch MT, Kottyan LC. Gene–environment interactions and their impact on human health. Genes Immun. 2022;24:1–11.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Milbocker KA, Campbell TS, Collins N, Kim S, Smith IF, Roth TL, et al. Glia-Driven Brain Circuit Refinement Is Altered by Early-Life Adversity: Behavioral Outcomes. Front Behav Neurosci. 2021;15:786234.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Christopherson KS, Ullian EM, Stokes CCA, Mullowney CE, Hell JW, Agah A, et al. Thrombospondins Are Astrocyte-Secreted Proteins that Promote CNS Synaptogenesis. Cell. 2005;120:421–33.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pfrieger FW, Barres BA. Synaptic Efficacy Enhanced by Glial Cells in Vitro. Science. 1997;277:1684–7.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mauch DH, Nägler K, Schumacher S, Göritz C, Müller EC, Otto A, et al. CNS Synaptogenesis Promoted by Glia-Derived Cholesterol. Science. 2001;294:1354–7.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Eroglu Ç, Allen NJ, Susman MW, O’Rourke NA, Park CY, Özkan E, et al. Gabapentin Receptor α2δ-1 Is a Neuronal Thrombospondin Receptor Responsible for Excitatory CNS Synaptogenesis. Cell. 2009;139:380–92.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fossati G, Pozzi D, Canzi A, Mirabella F, Valentino S, Morini R, et al. Pentraxin 3 regulates synaptic function by inducing AMPA receptor clustering via ECM remodeling and β1‐integrin. EMBO J. 2019;38:e99529.

    Article 
    PubMed 

    Google Scholar 

  • Allen NJ, Bennett ML, Foo LC, Wang GX, Chakraborty C, Smith SJ, et al. Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via GluA1 AMPA receptors. Nature. 2012;486:410–4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Diniz LP, Almeida JC, Tortelli V, Vargas Lopes C, Setti-Perdigão P, Stipursky J, et al. Astrocyte-induced Synaptogenesis Is Mediated by Transforming Growth Factor β Signaling through Modulation of d-Serine Levels in Cerebral Cortex Neurons. J Biol Chem. 2012;287:41432–45.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Diniz LP, Tortelli V, Garcia MN, Araújo APB, Melo HM, Seixas Da Silva GS, et al. Astrocyte transforming growth factor beta 1 promotes inhibitory synapse formation via CaM kinase II signaling. Glia. 2014;62:1917–31.

    Article 
    PubMed 

    Google Scholar 

  • Gómez-Casati ME, Murtie JC, Rio C, Stankovic K, Liberman MC, Corfas G. Nonneuronal cells regulate synapse formation in the vestibular sensory epithelium via erbB-dependent BDNF expression. Proc Natl Acad Sci. 2010;107:17005–10.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shan L, Zhang T, Fan K, Cai W, Liu H. Astrocyte-Neuron Signaling in Synaptogenesis. Front Cell Dev Biol. 2021;9:680301.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tan CX, Burrus Lane CJ, Eroglu C. Role of astrocytes in synapse formation and maturation. In: Current Topics in Developmental Biology. Elsevier; 2021;371–407. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0070215320301435.

  • Konishi H, Koizumi S, Kiyama H. Phagocytic astrocytes: Emerging from the shadows of microglia. Glia 2022;70:1009–26.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Juraska JM, Willing J. Pubertal onset as a critical transition for neural development and cognition. Brain Res. 2017;1654:87–94.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Huttenlocher PR, Dabholkar AS. Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol. 1997;387:167–78.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Peter RH. Synaptic density in human frontal cortex — Developmental changes and effects of aging. Brain Res. 1979;163:195–205.

    Article 

    Google Scholar 

  • Dosenbach NUF, Nardos B, Cohen AL, Fair DA, Power JD, Church JA, et al. Prediction of Individual Brain Maturity Using fMRI. Science. 2010;329:1358–61.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Petanjek Z, Judaš M, Šimić G, Rašin MR, Uylings HBM, Rakic P, et al. Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proc Natl Acad Sci. 2011;108:13281–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Antoine MW, Langberg T, Schnepel P, Feldman DE. Increased Excitation-Inhibition Ratio Stabilizes Synapse and Circuit Excitability in Four Autism Mouse Models. Neuron. 2019;101:648–61.e4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aida T, Yoshida J, Nomura M, Tanimura A, Iino Y, Soma M, et al. Astroglial Glutamate Transporter Deficiency Increases Synaptic Excitability and Leads to Pathological Repetitive Behaviors in Mice. Neuropsychopharmacology. 2015;40:1569–79.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ortinski PI, Dong J, Mungenast A, Yue C, Takano H, Watson DJ, et al. Selective induction of astrocytic gliosis generates deficits in neuronal inhibition. Nat Neurosci. 2010;13:584–91.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Escartin C, Galea E, Lakatos A, O’Callaghan JP, Petzold GC, Serrano-Pozo A, et al. Reactive astrocyte nomenclature, definitions, and future directions. Nat Neurosci. 2021;24:312–25.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Eltokhi A, Janmaat IE, Genedi M, Haarman BCM, Sommer IEC. Dysregulation of synaptic pruning as a possible link between intestinal microbiota dysbiosis and neuropsychiatric disorders. J Neurosci Res. 2020;98:1335–69.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cardozo PL, De Lima IBQ, Maciel EMA, Silva NC, Dobransky T, Ribeiro FM. Synaptic Elimination in Neurological Disorders. Curr Neuropharmacol. 2019;17:1071–95.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhuang Y, Xu X, Li H, Niu F, Yang M, Ge Q, et al. Megf10‐related engulfment of excitatory postsynapses by astrocytes following severe brain injury. CNS Neurosci Ther. 2023;29:2873–83.

  • Iram T, Ramirez-Ortiz Z, Byrne MH, Coleman UA, Kingery ND, Means TK, et al. Megf10 Is a Receptor for C1Q That Mediates Clearance of Apoptotic Cells by Astrocytes. J Neurosci. 2016;36:5185–92.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pattwell SS, Liston C, Jing D, Ninan I, Yang RR, Witztum J, et al. Dynamic changes in neural circuitry during adolescence are associated with persistent attenuation of fear memories. Nat Commun. 2016;7:11475.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Honeycutt JA, Demaestri C, Peterzell S, Silveri MM, Cai X, Kulkarni P, et al. Altered corticolimbic connectivity reveals sex-specific adolescent outcomes in a rat model of early life adversity. eLife. 2020;9:e52651.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Karpova NN, Pickenhagen A, Lindholm J, Tiraboschi E, Kulesskaya N, Ágústsdóttir A, et al. Fear Erasure in Mice Requires Synergy Between Antidepressant Drugs and Extinction Training. Science. 2011;334:1731–4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vetencourt JFM, Sale A, Viegi A, Baroncelli L, De Pasquale RF, et al. The Antidepressant Fluoxetine Restores Plasticity in the Adult Visual Cortex. Science. 2008;320:385–8.

    Article 

    Google Scholar 

  • Ribot J, Breton R, Calvo CF, Moulard J, Ezan P, Zapata J, et al. Astrocytes close the mouse critical period for visual plasticity. Science. 2021;373:77–81.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Müller CM, Best J. Ocular dominance plasticity in adult cat visual cortex after transplantation of cultured astrocytes. Nature. 1989;342:427–30.

    Article 
    PubMed 

    Google Scholar 

  • Ghézali G, Calvo CF, Pillet LE, Llense F, Ezan P, Pannasch U, et al. Connexin 30 controls astroglial polarization during postnatal brain development. Development. 2018;145:dev155275.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Abbink MR, Deijk AF, Heine VM, Verheijen MH, Korosi A. The involvement of astrocytes in early‐life adversity induced programming of the brain. Glia. 2019;67:1637–53.

  • Codeluppi SA, Chatterjee D, Prevot TD, Bansal Y, Misquitta KA, Sibille E, et al. Chronic Stress Alters Astrocyte Morphology in Mouse Prefrontal Cortex. Int J Neuropsychopharmacol. 2021;24:842–53.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Woodburn SC, Bollinger JL, Wohleb ES. Synaptic and behavioral effects of chronic stress are linked to dynamic and sex-specific changes in microglia function and astrocyte dystrophy. Neurobiol Stress. 2021;14:100312.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dolotov OV, Inozemtseva LS, Myasoedov NF, Grivennikov IA. Stress-Induced Depression and Alzheimer’s Disease: Focus on Astrocytes. Int J Mol Sci. 2022;23:4999.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Naskar S, Chattarji S. Stress Elicits Contrasting Effects on the Structure and Number of Astrocytes in the Amygdala versus Hippocampus. eNeuro. 2019;6:ENEURO.0338-18.2019.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Murphy‐Royal C, Gordon GR, Bains JS. Stress‐induced structural and functional modifications of astrocytes—Further implicating glia in the central response to stress. Glia. 2019;67:1806–20.

    Article 
    PubMed 

    Google Scholar 

  • Yoshino K, Oda Y, Kimura M, Kimura H, Nangaku M, Shirayama Y, et al. The alterations of glutamate transporter 1 and glutamine synthetase in the rat brain of a learned helplessness model of depression. Psychopharmacology. 2020;237:2547–53.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tynan RJ, Beynon SB, Hinwood M, Johnson SJ, Nilsson M, Woods JJ, et al. Chronic stress-induced disruption of the astrocyte network is driven by structural atrophy and not loss of astrocytes. Acta Neuropathol. 2013;126:75–91.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Virmani G, D’almeida P, Nandi A, Marathe S. Subfield‐specific effects of chronic mild unpredictable stress on hippocampal astrocytes. Eur J Neurosci. 2021;54:5730–46.

  • Lu CL, Ren J, Mo JW, Fan J, Guo F, Chen LY, et al. Glucocorticoid Receptor–Dependent Astrocytes Mediate Stress Vulnerability. Biol Psychiatry. 2022;92:204–15.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Huang D, Li C, Zhang W, Qin J, Jiang W, Hu C. Dysfunction of astrocytic connexins 30 and 43 in the medial prefrontal cortex and hippocampus mediates depressive-like behaviours. Behav Brain Res. 2019;372:111950.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Byun YG, Kim NS, Kim G, Jeon YS, Choi JB, Park CW, et al. Stress induces behavioral abnormalities by increasing expression of phagocytic receptor MERTK in astrocytes to promote synapse phagocytosis. Immunity. 2023;56:2105–20.e13.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Miguel-Hidalgo JJ, Moulana M, Deloach PH, Rajkowska G. Chronic Unpredictable Stress Reduces Immunostaining for Connexins 43 and 30 and Myelin Basic Protein in the Rat Prelimbic and Orbitofrontal Cortices. Chronic Stress. 2018;2:247054701881418.

    Article 

    Google Scholar 

  • Kang Y, Kang W, Kim A, Tae WS, Ham BJ, Han KM. Decreased cortical gyrification in major depressive disorder. Psychol Med. 2023;53:7512–24.

    Article 
    PubMed 

    Google Scholar 

  • Ning M, Li C, Gao L, Fan J. Core-Symptom-Defined Cortical Gyrification Differences in Autism Spectrum Disorder. Front Psychiatry. 2021;12:619367.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Takayanagi Y, Sasabayashi D, Takahashi T, Komori Y, Furuichi A, Kido M, et al. Altered brain gyrification in deficit and non-deficit schizophrenia. Psychol Med. 2019;49:573–80.

    Article 
    PubMed 

    Google Scholar 

  • Cao B, Mwangi B, Passos IC, Wu MJ, Keser Z, Zunta-Soares GB, et al. Lifespan Gyrification Trajectories of Human Brain in Healthy Individuals and Patients with Major Psychiatric Disorders. Sci Rep. 2017;7:511.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sasabayashi D, Takahashi T, Takayanagi Y, Suzuki M. Anomalous brain gyrification patterns in major psychiatric disorders: a systematic review and transdiagnostic integration. Transl Psychiatry. 2021;11:176.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rajkowska G, Miguel-Hidalgo JJ. Glial Pathology in Major Depressive Disorder: An Approach to Investigate the Coverage of Blood Vessels by Astrocyte Endfeet in Human Postmortem Brain. In: Di Benedetto B, editor. Astrocytes. New York, NY: Springer New York; 2019. p. 247–54. (Methods in Molecular Biology; vol. 1938). Available from: http://link.springer.com/10.1007/978-1-4939-9068-9_17.

  • Di Benedetto B, Rupprecht R. Targeting Glia Cells: Novel Perspectives for the Treatment of Neuropsychiatric Diseases. Curr Neuropharmacol. 2013;11:171–85.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Roman C, Egert L, Di Benedetto B. Astrocytic‐neuronal crosstalk gets jammed: Alternative perspectives on the onset of neuropsychiatric disorders. Eur J Neurosci. 2021;54:5717–29.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nagy C, Suderman M, Yang J, Szyf M, Mechawar N, Ernst C, et al. Astrocytic abnormalities and global DNA methylation patterns in depression and suicide. Mol Psychiatry. 2015;20:320–8.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Martins-Macedo J, Salgado AJ, Gomes ED, Pinto L. Adult brain cytogenesis in the context of mood disorders: From neurogenesis to the emergent role of gliogenesis. Neurosci Biobehav Rev. 2021;131:411–28.

    Article 
    PubMed 

    Google Scholar 

  • Feresten AH, Barakauskas V, Ypsilanti A, Barr AM, Beasley CL. Increased expression of glial fibrillary acidic protein in prefrontal cortex in psychotic illness. Schizophr Res. 2013;150:252–7.

    Article 
    PubMed 

    Google Scholar 

  • Tarasov VV, Svistunov AA, Chubarev VN, Sologova SS, Mukhortova P, Levushkin D, et al. Alterations of Astrocytes in the Context of Schizophrenic Dementia. Front Pharm. 2020;10:1612.

    Article 

    Google Scholar 

  • Notter T. Astrocytes in schizophrenia. Brain Neurosci Adv. 2021;5:239821282110091.

    Article 

    Google Scholar 

  • Vakilzadeh G, Martinez-Cerdeño V. Pathology and Astrocytes in Autism. Neuropsychiatr Dis Treat. 2023;19:841–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Allen M, Huang BS, Notaras MJ, Lodhi A, Barrio-Alonso E, Lituma PJ, et al. Astrocytes derived from ASD individuals alter behavior and destabilize neuronal activity through aberrant Ca2+ signaling. Mol Psychiatry. 2022;27:2470–84.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rajkowska G, Miguel-Hidalgo J. Gliogenesis and Glial Pathology in Depression. CNS Neurol Disord – Drug Targets. 2007;6:219–33.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Belleau EL, Treadway MT, Pizzagalli DA. The Impact of Stress and Major Depressive Disorder on Hippocampal and Medial Prefrontal Cortex Morphology. Biol Psychiatry. 2019;85:443–53.

    Article 
    PubMed 

    Google Scholar 

  • Malykhin NV, Carter R, Seres P, Coupland NJ. Structural changes in the hippocampus in major depressive disorder: contributions of disease and treatment. J Psychiatry Neurosci. 2010;35:337–43.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Geng R, Huang X. Identification of major depressive disorder disease-related genes and functional pathways based on system dynamic changes of network connectivity. BMC Med Genomics. 2021;14:55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Czéh B, Simon M, Schmelting B, Hiemke C, Fuchs E. Astroglial Plasticity in the Hippocampus is Affected by Chronic Psychosocial Stress and Concomitant Fluoxetine Treatment. Neuropsychopharmacology. 2006;31:1616–26.

    Article 
    PubMed 

    Google Scholar 

  • Czéh B, Di Benedetto B. Antidepressants act directly on astrocytes: Evidences and functional consequences. Eur Neuropsychopharmacol. 2013;23:171–85.

    Article 
    PubMed 

    Google Scholar 

  • Czéh B, Nagy SA. Clinical Findings Documenting Cellular and Molecular Abnormalities of Glia in Depressive Disorders. Front Mol Neurosci. 2018;11:56.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Papouin T, Ladépêche L, Ruel J, Sacchi S, Labasque M, Hanini M, et al. Synaptic and Extrasynaptic NMDA Receptors Are Gated by Different Endogenous Coagonists. Cell. 2012;150:633–46.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Henneberger C, Papouin T, Oliet SHR, Rusakov DA. Long-term potentiation depends on release of d-serine from astrocytes. Nature. 2010;463:232–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Blanco-Suarez E, Liu TF, Kopelevich A, Allen NJ. Astrocyte-Secreted Chordin-like 1 Drives Synapse Maturation and Limits Plasticity by Increasing Synaptic GluA2 AMPA Receptors. Neuron. 2018;100:1116–32.e13.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Caldwell ALM, Sancho L, Deng J, Bosworth A, Miglietta A, Diedrich JK, et al. Aberrant astrocyte protein secretion contributes to altered neuronal development in multiple models of neurodevelopmental disorders. Nat Neurosci. 2022;25:1163–78.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Heresco-Levy U, Javitt DC, Ebstein R, Vass A, Lichtenberg P, Bar G, et al. D-serine efficacy as add-on pharmacotherapy to risperidone and olanzapine for treatment-refractory schizophrenia. Biol Psychiatry. 2005;57:577–85.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kantrowitz JT, Malhotra AK, Cornblatt B, Silipo G, Balla A, Suckow RF, et al. High dose D-serine in the treatment of schizophrenia. Schizophr Res. 2010;121:125–30.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ma TM, Abazyan S, Abazyan B, Nomura J, Yang C, Seshadri S, et al. Pathogenic disruption of DISC1-serine racemase binding elicits schizophrenia-like behavior via D-serine depletion. Mol Psychiatry. 2013;18:557–67.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cardno AG. Gottesman II. Twin studies of schizophrenia: From bow-and-arrow concordances to Star Wars Mx and functional genomics. Am J Med Genet. 2000;97:12–7.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Walker EF, Trotman HD, Pearce BD, Addington J, Cadenhead KS, Cornblatt BA, et al. Cortisol Levels and Risk for Psychosis: Initial Findings from the North American Prodrome Longitudinal Study. Biol Psychiatry. 2013;74:410–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Selemon LD, Zecevic N. Schizophrenia: a tale of two critical periods for prefrontal cortical development. Transl Psychiatry. 2015;5:e623.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sheu JR, Hsieh CY, Jayakumar T, Tseng MF, Lee HN, Huang SW, et al. A Critical Period for the Development of Schizophrenia-Like Pathology by Aberrant Postnatal Neurogenesis. Front Neurosci. 2019;13:635.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • De Oliveira Figueiredo EC, Calì C, Petrelli F, Bezzi P. Emerging evidence for astrocyte dysfunction in schizophrenia. Glia. 2022;70:1585–604.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Russo FB, Freitas BC, Pignatari GC, Fernandes IR, Sebat J, Muotri AR, et al. Modeling the Interplay Between Neurons and Astrocytes in Autism Using Human Induced Pluripotent Stem Cells. Biol Psychiatry. 2018;83:569–78.

    Article 
    PubMed 

    Google Scholar 

  • Berger JM, Rohn TT, Oxford JT. Autism as the Early Closure of a Neuroplastic Critical Period Normally Seen in Adolescence. Biol Syst Open Access. 2012;02. Available from: https://www.omicsgroup.org/journals/autism-as-the-early-closure-of-a-neuroplastic-critical-period-normally-seen-in-adolescence-2329-6577-1000118.php?aid=43859.

  • Hashimoto Y, Greene C, Munnich A, Campbell M. The CLDN5 gene at the blood-brain barrier in health and disease. Fluids Barriers CNS. 2023;20:22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Igarashi Y, Utsumi H, Chiba H, Yamada-Sasamori Y, Tobioka H, Kamimura Y, et al. Glial Cell Line-Derived Neurotrophic Factor Induces Barrier Function of Endothelial Cells Forming the Blood–Brain Barrier. Biochem Biophys Res Commun. 1999;261:108–12.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rajkowska G, Hughes J, Stockmeier CA, Javier Miguel-Hidalgo J, Maciag D. Coverage of Blood Vessels by Astrocytic Endfeet Is Reduced in Major Depressive Disorder. Biol Psychiatry. 2013;73:613–21.

    Article 
    PubMed 

    Google Scholar 

  • Lee E, Chung WS. Glial Control of Synapse Number in Healthy and Diseased Brain. Front Cell Neurosci. 2019;13:42.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Di Benedetto B, Malik VA, Begum S, Jablonowski L, Gómez-González GB, Neumann ID, et al. Fluoxetine Requires the Endfeet Protein Aquaporin-4 to Enhance Plasticity of Astrocyte Processes. Front Cell Neurosci. 2016;10. Available from: http://journal.frontiersin.org/Article/10.3389/fncel.2016.00008/abstract.

  • Malik VA, Zajicek F, Mittmann LA, Klaus J, Unterseer S, Rajkumar S, et al. GDF15 promotes simultaneous astrocyte remodeling and tight junction strengthening at the blood–brain barrier. J Neurosci Res. 2020;98:1433–56.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Williams BP, Price J. Evidence for multiple precursor cell types in the embryonic rat cerebral cortex. Neuron. 1995;14:1181–8.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chung WS, Allen NJ, Eroglu C. Astrocytes Control Synapse Formation, Function, and Elimination. Cold Spring Harb Perspect Biol. 2015;7:a020370.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chung WS, Clarke LE, Wang GX, Stafford BK, Sher A, Chakraborty C, et al. Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature. 2013;504:394–400.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Logan MA, Freeman MR. The scoop on the fly brain: glial engulfment functions in Drosophila. Neuron Glia Biol. 2007;3:63–74.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Freeman MR, Delrow J, Kim J, Johnson E, Doe CQ. Unwrapping Glial Biology. Neuron. 2003;38:567–80.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Reddien PW, Horvitz HR. The engulfment process of programmed cell death in Caenorhabditis elegans. Annu Rev Cell Dev Biol. 2004;20:193–221.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, et al. The Classical Complement Cascade Mediates CNS Synapse Elimination. Cell. 2007;131:1164–78.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, et al. Microglia Sculpt Postnatal Neural Circuits in an Activity and Complement-Dependent Manner. Neuron. 2012;74:691–705.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, et al. Synaptic Pruning by Microglia Is Necessary for Normal Brain Development. Science. 2011;333:1456–8.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dejanovic B, Wu T, Tsai MC, Graykowski D, Gandham VD, Rose CM, et al. Complement C1q-dependent excitatory and inhibitory synapse elimination by astrocytes and microglia in Alzheimer’s disease mouse models. Nat Aging. 2022;2:837–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Favuzzi E, Huang S, Saldi GA, Binan L, Ibrahim LA, Fernández-Otero M, et al. GABA-receptive microglia selectively sculpt developing inhibitory circuits. Cell. 2021;184:4048–63.e32.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Park J, Choi Y, Jung E, Lee S, Sohn J, Chung W. Microglial MERTK eliminates phosphatidylserine‐displaying inhibitory post‐synapses. EMBO J. 2021;40:e107121.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Scott‐Hewitt N, Perrucci F, Morini R, Erreni M, Mahoney M, Witkowska A, et al. Local externalization of phosphatidylserine mediates developmental synaptic pruning by microglia. EMBO J. 2020;39:e105380.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schmidtner AK, Slattery DA, Gläsner J, Hiergeist A, Gryksa K, Malik VA, et al. Minocycline alters behavior, microglia and the gut microbiome in a trait-anxiety-dependent manner. Transl Psychiatry. 2019;9:223.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cullheim S, Thams S. The microglial networks of the brain and their role in neuronal network plasticity after lesion. Brain Res Rev. 2007;55:89–96.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Datta D, Leslie SN, Morozov YM, Duque A, Rakic P, Van Dyck CH, et al. Classical complement cascade initiating C1q protein within neurons in the aged rhesus macaque dorsolateral prefrontal cortex. J Neuroinflammation. 2020;17:8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Geloso MC, D’Ambrosi N. Microglial Pruning: Relevance for Synaptic Dysfunction in Multiple Sclerosis and Related Experimental Models. Cells. 2021;10:686.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hammond TR, Robinton D, Stevens B. Microglia and the Brain: Complementary Partners in Development and Disease. Annu Rev Cell Dev Biol. 2018;34:523–44.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lee JH, Kim JY, Noh S, Lee H, Lee SY, Mun JY, et al. Astrocytes phagocytose adult hippocampal synapses for circuit homeostasis. Nature. 2021;590:612–7.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Damisah EC, Hill RA, Rai A, Chen F, Rothlin CV, Ghosh S, et al. Astrocytes and microglia play orchestrated roles and respect phagocytic territories during neuronal corpse removal in vivo. Sci Adv. 2020;6:eaba3239.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Eladl E, Tremblay-LeMay R, Rastgoo N, Musani R, Chen W, Liu A, et al. Role of CD47 in Hematological Malignancies. J Hematol OncolJ Hematol Oncol. 2020;13:96.

    Article 

    Google Scholar 

  • Lehrman EK, Wilton DK, Litvina EY, Welsh CA, Chang ST, Frouin A, et al. CD47 Protects Synapses from Excess Microglia-Mediated Pruning during Development. Neuron. 2018;100:120–34.e6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li J, Brickler T, Banuelos A, Marjon K, Shcherbina A, Banerjee S, et al. Overexpression of CD47 is associated with brain overgrowth and 16p11.2 deletion syndrome. Proc Natl Acad Sci. 2021;118:e2005483118.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chu Y, Jin X, Parada I, Pesic A, Stevens B, Barres B, et al. Enhanced synaptic connectivity and epilepsy in C1q knockout mice. Proc Natl Acad Sci. 2010;107:7975–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hong S, Beja-Glasser VF, Nfonoyim BM, Frouin A, Li S, Ramakrishnan S, et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science. 2016;352:712–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dion-Albert L, Bandeira Binder L, Daigle B, Hong-Minh A, Lebel M, Menard C. Sex differences in the blood-brain barrier: implications for mental health. Front Neuroendocrinol. 2022;65:100989.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Blokland GAM, Grove J, Chen CY, Cotsapas C, Tobet S, Handa R, et al. Sex-Dependent Shared and Nonshared Genetic Architecture Across Mood and Psychotic Disorders. Biol Psychiatry. 2022;91:102–17.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Riecher-Rössler A. Sex and gender differences in mental disorders. Lancet Psychiatry. 2017;4:8–9.

    Article 
    PubMed 

    Google Scholar 

  • Ramiro L, Faura J, Simats A, García-Rodríguez P, Ma F, Martín L, et al. Influence of sex, age and diabetes on brain transcriptome and proteome modifications following cerebral ischemia. BMC Neurosci. 2023;24:7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Iturria-Medina Y, Adewale Q, Khan AF, Ducharme S, Rosa-Neto P, O’Donnell K, et al. Unified epigenomic, transcriptomic, proteomic, and metabolomic taxonomy of Alzheimer’s disease progression and heterogeneity. Sci Adv. 2022;8:eabo6764.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • López-Cerdán A, Andreu Z, Hidalgo MR, Grillo-Risco R, Català-Senent JF, Soler-Sáez I, et al. Unveiling sex-based differences in Parkinson’s disease: a comprehensive meta-analysis of transcriptomic studies. Biol Sex Differ. 2022;13:68.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maitra M, Mitsuhashi H, Rahimian R, Chawla A, Yang J, Fiori LM, et al. Cell type specific transcriptomic differences in depression show similar patterns between males and females but implicate distinct cell types and genes. Nat Commun. 2023;14:2912.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hyer MM, Phillips LL, Neigh GN. Sex Differences in Synaptic Plasticity: Hormones and Beyond. Front Mol Neurosci. 2018;11:266.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rutter M, Caspi A, Moffitt TE. Using sex differences in psychopathology to study causal mechanisms: unifying issues and research strategies: Using sex differences in psychopathology to study causal mechanisms. J Child Psychol Psychiatry. 2003;44:1092–115.

    Article 
    PubMed 

    Google Scholar 

  • Ziemka-Nalecz M, Pawelec P, Ziabska K, Zalewska T. Sex Differences in Brain Disorders. Int J Mol Sci. 2023;24:14571.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ruigrok ANV, Salimi-Khorshidi G, Lai MC, Baron-Cohen S, Lombardo MV, Tait RJ, et al. A meta-analysis of sex differences in human brain structure. Neurosci Biobehav Rev. 2014;39:34–50.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Knickmeyer RC, Styner M, Short SJ, Lubach GR, Kang C, Hamer R, et al. Maturational Trajectories of Cortical Brain Development through the Pubertal Transition: Unique Species and Sex Differences in the Monkey Revealed through Structural Magnetic Resonance Imaging. Cereb Cortex. 2010;20:1053–63.

    Article 
    PubMed 

    Google Scholar 

  • Dehorter N, Del Pino I. Shifting Developmental Trajectories During Critical Periods of Brain Formation. Front Cell Neurosci. 2020;14:283.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rurak GM, Simard S, Freitas-Andrade M, Lacoste B, Charih F, Van Geel A, et al. Sex differences in developmental patterns of neocortical astroglia: A mouse translatome database. Cell Rep. 2022;38:110310.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Clarkson J, Herbison AE. Hypothalamic control of the male neonatal testosterone surge. Philos Trans R Soc Lond B Biol Sci. 2016;371:20150115.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Acaz-Fonseca E, Avila-Rodriguez M, Garcia-Segura LM, Barreto GE. Regulation of astroglia by gonadal steroid hormones under physiological and pathological conditions. Prog Neurobiol. 2016;144:5–26.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rurak GM, Woodside B, Aguilar-Valles A, Salmaso N. Astroglial cells as neuroendocrine targets in forebrain development: Implications for sex differences in psychiatric disease. Front Neuroendocrinol. 2021;60:100897.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • link