Maternal heart rate variability at 3-months postpartum is associated with maternal mental health and infant neurophysiology
Pearson, R. M. et al. Prevalence of prenatal depression symptoms among 2 generations of pregnant mothers: the Avon longitudinal study of parents and children. JAMA Netw. Open 1, e180725 (2018).
Google Scholar
Riva Crugnola, C. et al. Mother-infant emotion regulation at three months: The role of maternal anxiety, depression and parenting stress. Psychopathology 49, 285–294 (2016).
Google Scholar
Hakanen, H. et al. How maternal pre- and postnatal symptoms of depression and anxiety affect early mother-infant interaction?. J. Affect. Disord. 257, 83–90 (2019).
Google Scholar
Slomian, J., Honvo, G., Emonts, P., Reginster, J.-Y. & Bruyère, O. Consequences of maternal postpartum depression: A systematic review of maternal and infant outcomes. Womens. Health 15, 1745506519844044 (2019).
Google Scholar
Chan, A. W., Reid, C., Skeffington, P. & Marriott, R. A systematic review of EPDS cultural suitability with Indigenous mothers: A global perspective. Arch. Womens. Ment. Health 24, 353–365 (2021).
Google Scholar
Rajendra Acharya, U., Paul Joseph, K., Kannathal, N., Lim, C. M. & Suri, J. S. Heart rate variability: A review. Med. Biol. Eng. Comput. 44, 1031–1051 (2006).
Google Scholar
Heiss, S., Vaschillo, B., Vaschillo, E. G., Timko, C. A. & Hormes, J. M. Heart rate variability as a biobehavioral marker of diverse psychopathologies: A review and argument for an “ideal range”. Neurosci. Biobehav. Rev. 121, 144–155 (2021).
Google Scholar
Appelhans, B. M. & Luecken, L. J. Heart rate variability as an index of regulated emotional responding. Rev. Gen. Psychol. 10, 229–240 (2006).
Google Scholar
Porges, S. W. Orienting in a defensive world: Mammalian modifications of our evolutionary heritage. A polyvagal theory. Psychophysiology 32, 301–318 (1995).
Google Scholar
Thayer, J. F. & Lane, R. D. A model of neurovisceral integration in emotion regulation and dysregulation. J. Affect. Disord. 61, 201–216 (2000).
Google Scholar
Krypotos, A.-M., Jahfari, S., van Ast, V. A., Kindt, M. & Forstmann, B. U. Individual differences in heart rate variability predict the degree of slowing during response inhibition and initiation in the presence of emotional stimuli. Front. Psychol. 2, 278 (2011).
Google Scholar
Thayer, J. F., Ahs, F., Fredrikson, M., Sollers, J. J. 3rd. & Wager, T. D. A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neurosci. Biobehav. Rev. 36, 747–756 (2012).
Google Scholar
Benarroch, E. E. The central autonomic network: Functional organization, dysfunction, and perspective. Mayo Clin. Proc. 68, 988–1001 (1993).
Google Scholar
McEwen, B. S. & Gianaros, P. J. Stress- and allostasis-induced brain plasticity. Annu. Rev. Med. 62, 431–445 (2011).
Google Scholar
McEwen, B. S. Stress, adaptation, and disease. Allostasis and allostatic load. Ann. N. Y. Acad. Sci. 840, 33–44 (1998).
Google Scholar
Bester, M. et al. Characterizing the effect of demographics, cardiorespiratory factors, and inter-subject variation on maternal heart rate variability in pregnancy with statistical modeling: A retrospective observational analysis. Sci. Rep. 12, 19305 (2022).
Google Scholar
Kimmel, M. C. et al. Heart rate variability in late pregnancy: Exploration of distinctive patterns in relation to maternal mental health. Transl. Psychiatry 11, 286 (2021).
Google Scholar
Garg, P. et al. Sequential analysis of heart rate variability, blood pressure variability and baroreflex sensitivity in healthy pregnancy. Clin. Auton. Res. 30, 433–439 (2020).
Google Scholar
Eneroth-Grimfors, E., Westgren, M., Ericson, M., Ihrman-Sandahl, C. & Lindblad, L. E. Autonomic cardiovascular control in normal and pre-eclamptic pregnancy. Acta Obstet. Gynecol. Scand. 73, 680–684 (1994).
Google Scholar
Moors, S. et al. Heart rate variability in hypertensive pregnancy disorders: A systematic review. Pregnancy Hypertens. 20, 56–68 (2020).
Google Scholar
Oppenheimer, J. E., Measelle, J. R., Laurent, H. K. & Ablow, J. C. Mothers’ vagal regulation during the still-face paradigm: Normative reactivity and impact of depression symptoms. Infant Behav. Dev. 36, 255–267 (2013).
Google Scholar
Smith, C. G. et al. Anxious parents show higher physiological synchrony with their infants. Psychol. Med. 52, 3040–3050 (2022).
Google Scholar
Ham, J. & Tronick, E. Infant resilience to the stress of the still-face: Infant and maternal psychophysiology are related. Ann. N. Y. Acad. Sci. 1094, 297–302 (2006).
Google Scholar
Gunnar, M. R. & Donzella, B. Social regulation of the cortisol levels in early human development. Psychoneuroendocrinology 27, 199–220 (2002).
Google Scholar
Bush, N. R. et al. Effects of pre- and postnatal maternal stress on infant temperament and autonomic nervous system reactivity and regulation in a diverse, low-income population. Dev. Psychopathol. 29, 1553–1571 (2017).
Google Scholar
Feldman, R. Sensitive periods in human social development: New insights from research on oxytocin, synchrony, and high-risk parenting. Dev. Psychopathol. 27, 369–395 (2015).
Google Scholar
Braren, S. H. et al. Maternal psychological stress moderates diurnal cortisol linkage in expectant fathers and mothers during late pregnancy. Psychoneuroendocrinology 111, 104474 (2020).
Google Scholar
Blair, C. & Raver, C. C. Individual development and evolution: Experiential canalization of self-regulation. Dev. Psychol. 48, 647–657 (2012).
Google Scholar
Ham, J. & Tronick, E. Relational psychophysiology: Lessons from mother-infant physiology research on dyadically expanded states of consciousness. Psychother. Res. 19, 619–632 (2009).
Google Scholar
Wass, S. V. et al. Parents mimic and influence their infant’s autonomic state through dynamic affective state matching. Curr. Biol. 29, 2415-2422.e4 (2019).
Google Scholar
Calkins, S. D., Perry, N. B. & Dollar, J. M. A biopsychosocial model of self-regulation in infancy. In Child Psychology: A Handbook of Contemporary Issues: Third Edition 3–20 (Taylor and Francis Inc., 2016).
Feldman, R. The neurobiology of mammalian parenting and the biosocial context of human caregiving. Horm. Behav. 77, 3–17 (2016).
Google Scholar
Nazzari, S., Fearon, P., Rice, F., Molteni, M. & Frigerio, A. Maternal caregiving moderates the impact of antenatal maternal cortisol on infant stress regulation. J. Child Psychol. Psychiatry 63, 871–880 (2022).
Google Scholar
Gunnar, M. R. Social regulation of stress in early child development. In Blackwell Handbook of Early Childhood Development vol. 663, 106–125 (2006).
Calkins, S. D. Caregiving as coregulation: Psychobiological processes and child functioning. In Biosocial Foundations of Family Processes (eds Booth, A. et al.) 49–59 (Springer New York, 2011).
Google Scholar
Tronick, E., Mueller, I., DiCorcia, J., Hunter, R. & Snidman, N. A caretaker acute stress paradigm: Effects on behavior and physiology of caretaker and infant. Dev. Psychobiol. 63, 237–246 (2021).
Google Scholar
Gabard-Durnam, L. & McLaughlin, K. A. Sensitive periods in human development: Charting a course for the future. Curr. Opin. Behav. Sci. 36, 120–128 (2020).
Google Scholar
Hensch, T. K. Critical period plasticity in local cortical circuits. Nat. Rev. Neurosci. 6, 877–888 (2005).
Google Scholar
Suga, A., Uraguchi, M., Tange, A., Ishikawa, H. & Ohira, H. Cardiac interaction between mother and infant: enhancement of heart rate variability. Sci. Rep. 9, 20019 (2019).
Google Scholar
DePasquale, C. E. A systematic review of caregiver-child physiological synchrony across systems: Associations with behavior and child functioning. Dev. Psychopathol. 32, 1754–1777 (2020).
Google Scholar
Chen, J., Xiao, Y., Xu, B. & Zhang, D. The developmental trajectory of task-related frontal EEG theta/beta ratio in childhood. Dev. Cogn. Neurosci. 60, 101233 (2023).
Google Scholar
Anderson, A. J. & Perone, S. Developmental change in the resting state electroencephalogram: Insights into cognition and the brain. Brain Cogn. 126, 40–52 (2018).
Google Scholar
Begum-Ali, J. et al. Altered theta-beta ratio in infancy associates with family history of ADHD and later ADHD-relevant temperamental traits. J. Child Psychol. Psychiatry 63, 1057–1067 (2022).
Google Scholar
Troller-Renfree, S. V. et al. Associations between maternal stress and infant resting brain activity among families residing in poverty in the U.S. Biol. Psychol. 108683 (2023).
Brandes-Aitken, A., Pini, N., Weatherhead, M. & Brito, N. H. Maternal hair cortisol predicts periodic and aperiodic infant frontal EEG activity longitudinally across infancy. Dev. Psychobiol. 65, e22393 (2023).
Google Scholar
Goldstein, B. L. et al. Positive and negative emotionality at age 3 predicts change in frontal EEG asymmetry across early childhood. J. Abnorm. Child Psychol. 47, 209–219 (2019).
Google Scholar
Smith, C. L., Diaz, A., Day, K. L. & Bell, M. A. Infant frontal electroencephalogram asymmetry and negative emotional reactivity as predictors of toddlerhood effortful control. J. Exp. Child Psychol. 142, 262–273 (2016).
Google Scholar
Gartstein, M. A., Hancock, G. R., Potapova, N. V., Calkins, S. D. & Bell, M. A. Modeling development of frontal electroencephalogram (EEG) asymmetry: Sex differences and links with temperament. Dev. Sci. 23, e12891 (2020).
Google Scholar
Hill, K. E. et al. Intergenerational transmission of frontal alpha asymmetry among mother-infant dyads. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 5, 420–428 (2020).
Google Scholar
Brooker, R. J., Canen, M. J., Davidson, R. J. & Hill Goldsmith, H. Short- and long-term stability of alpha asymmetry in infants: Baseline and affective measures. Psychophysiology 54, 1100–1109 (2017).
Google Scholar
Mulligan, D. J., Palopoli, A. C., van den Heuvel, M. I., Thomason, M. E. & Trentacosta, C. J. Frontal alpha asymmetry in response to stressor moderates the relation between parenting hassles and child externalizing problems. Front. Neurosci. 16, 917300 (2022).
Google Scholar
Young, H. & Benton, D. We should be using nonlinear indices when relating heart-rate dynamics to cognition and mood. Sci. Rep. 5, 16619 (2015).
Google Scholar
Abney, D. H., daSilva, E. B., Lewis, G. F. & Bertenthal, B. I. A method for measuring dynamic respiratory sinus arrhythmia (RSA) in infants and mothers. Infant Behav. Dev. 63, 101569 (2021).
Google Scholar
Pierce, L. J. et al. Association of perceived maternal stress during the perinatal period with electroencephalography patterns in 2-month-old infants. JAMA Pediatr. 173, 561–570 (2019).
Google Scholar
Brandes-Aitken, A. et al. Within-person changes in basal cortisol and caregiving modulate executive attention across infancy. Dev. Psychopathol. 1–14 (2021).
Hane, A. A. & Fox, N. A. Ordinary variations in maternal caregiving influence human infants’ stress reactivity. Psychol. Sci. 17, 550–556 (2006).
Google Scholar
Friedman, B. H. & Thayer, J. F. Autonomic balance revisited: Panic anxiety and heart rate variability. J. Psychosom. Res. 44, 133–151 (1998).
Google Scholar
Miller, J. G. et al. Heart rate variability moderates the effects of COVID-19-related stress and family adversity on emotional problems in adolescents: Testing models of differential susceptibility and diathesis stress. Dev. Psychopathol. 34, 1–12 (2021).
Google Scholar
Schiweck, C., Piette, D., Berckmans, D., Claes, S. & Vrieze, E. Heart rate and high frequency heart rate variability during stress as biomarker for clinical depression. A systematic review. Psychol. Med. 49, 200–211 (2019).
Google Scholar
Kogler, L. et al. Psychosocial versus physiological stress—Meta-analyses on deactivations and activations of the neural correlates of stress reactions. Neuroimage 119, 235–251 (2015).
Google Scholar
Agorastos, A. et al. Vagal effects of endocrine HPA axis challenges on resting autonomic activity assessed by heart rate variability measures in healthy humans. Psychoneuroendocrinology 102, 196–203 (2019).
Google Scholar
McCraty, R. & Shaffer, F. Heart rate variability: New perspectives on physiological mechanisms, assessment of self-regulatory capacity, and health risk. Glob. Adv. Health Med. 4, 46–61 (2015).
Google Scholar
Calkins, S. D. & Hill, A. Caregiver influences on emerging emotion regulation. In Handbook of Emotion Regulation vol. 229248, 229–248 (2007).
Gunnar, M. R. & Cheatham, C. L. Brain and behavior interface: Stress and the developing brain. Infant Ment. Health J. 24, 195–211 (2003).
Google Scholar
Blair, C. Stress and the development of executive functions. In 37th Minnesota Symposium on Child Psychology: Developing Cognitive Control Processes: Mechanisms, Implications, and Interventions 145–180 (Wiley Online Library, 2014).
St John, A. M., Kao, K., Liederman, J., Grieve, P. G. & Tarullo, A. R. Maternal cortisol slope at 6 months predicts infant cortisol slope and EEG power at 12 months. Dev. Psychobiol. 59, 787–801 (2017).
Google Scholar
Troller-Renfree, S. V. et al. Infants of mothers with higher physiological stress show alterations in brain function. Dev. Sci. e12976 (2020).
Abney, D. H., daSilva, E. B. & Bertenthal, B. I. Associations between infant-mother physiological synchrony and 4- and 6-month-old infants’ emotion regulation. Dev. Psychobiol. 63, e22161 (2021).
Google Scholar
Busuito, A., Quigley, K. M., Moore, G. A., Voegtline, K. M. & DiPietro, J. A. In sync: Physiological correlates of behavioral synchrony in infants and mothers. Dev. Psychol. 55, 1034–1045 (2019).
Google Scholar
Lunkenheimer, E., Brown, K. M. & Fuchs, A. Differences in mother-child and father-child RSA synchrony: Moderation by child self-regulation and dyadic affect. Dev. Psychobiol. 63, 1210–1224 (2021).
Google Scholar
McFarland, D. H., Fortin, A. J. & Polka, L. Physiological measures of mother-infant interactional synchrony. Dev. Psychobiol. 62, 50–61 (2020).
Google Scholar
Somers, J. A., Luecken, L. J., McNeish, D., Lemery-Chalfant, K. & Spinrad, T. L. Second-by-second infant and mother emotion regulation and coregulation processes. Dev. Psychopathol. 1–14 (2021).
Carozza, S. & Leong, V. The role of affectionate caregiver touch in early neurodevelopment and parent–infant interactional synchrony. Front. Neurosci. 14 (2021).
Feldman, R., Singer, M. & Zagoory, O. Touch attenuates infants’ physiological reactivity to stress. Dev. Sci. 13, 271–278 (2010).
Google Scholar
Feldman, R. Parent?infant synchrony and the construction of shared timing; physiological precursors, developmental outcomes, and risk conditions. J. Child Psychol. Psychiat. 48, 329–354 (2007).
Google Scholar
Fox, N. A. & Reeb, B. C. Cortical Asymmetry. In Handbook of Approach and Avoidance Motivation 35–49 (Psychology Press, 2013).
Trevarthen, C. Lateral asymmetries in infancy: Implications for the development of the hemispheres. Neurosci. Biobehav. Rev. 20, 571–586 (1996).
Google Scholar
Johnson, M. H. Interactive specialization: A domain-general framework for human functional brain development?. Dev. Cogn. Neurosci. 1, 7–21 (2011).
Google Scholar
Nguyen, T., Hoehl, S., Bertenthal, B. I. & Abney, D. H. Coupling between prefrontal brain activity and respiratory sinus arrhythmia in infants and adults. Dev. Cogn. Neurosci. 58, 101184 (2022).
Google Scholar
Levin, A. R., Méndez Leal, A. S., Gabard-Durnam, L. J. & O’Leary, H. M. BEAPP: The batch electroencephalography automated processing platform. Front. Neurosci. 12, 513 (2018).
Google Scholar
Gabard-Durnam, L. J., Mendez Leal, A. S., Wilkinson, C. L. & Levin, A. R. The harvard automated processing pipeline for electroencephalography (HAPPE): Standardized processing software for developmental and high-artifact data. Front. Neurosci. 12, 97 (2018).
Google Scholar
Winkler, I., Haufe, S. & Tangermann, M. Automatic classification of artifactual ICA-components for artifact removal in EEG signals. Behav. Brain Funct. 7, 30 (2011).
Google Scholar
Saby, J. N. & Marshall, P. J. The utility of EEG band power analysis in the study of infancy and early childhood. Dev. Neuropsychol. 37, 253–273 (2012).
Google Scholar
Haegens, S. et al. Beta oscillations in the monkey sensorimotor network reflect somatosensory decision making. Proc. Natl. Acad. Sci. U.S.A. 108, 10708–10713 (2011).
Google Scholar
Bell, M. A. & Cuevas, K. Using EEG to study cognitive development: Issues and practices. J. Cogn. Dev. 13, 281–294 (2012).
Google Scholar
Law, E. C. et al. Associations between infant screen use, electroencephalography markers, and cognitive outcomes. JAMA Pediatr. 177, 311–318 (2023).
Google Scholar
Arns, M., Conners, C. K. & Kraemer, H. C. A decade of EEG theta/beta ratio research in ADHD: A meta-analysis. J. Atten. Disord. 17, 374–383 (2013).
Google Scholar
Gasser, T., Bächer, P. & Möcks, J. Transformations towards the normal distribution of broad band spectral parameters of the EEG. Electroencephalogr. Clin. Neurophysiol. 53, 119–124 (1982).
Google Scholar
Allen, J. J. B., Chambers, A. S. & Towers, D. N. The many metrics of cardiac chronotropy: A pragmatic primer and a brief comparison of metrics. Biol. Psychol. 74, 243–262 (2007).
Google Scholar
Pham, T., Lau, Z. J., Chen, S. H. A. & Makowski, D. Heart rate variability in psychology: A review of HRV indices and an analysis tutorial. Sensors 21 (2021).
Gomes, P., Margaritoff, P. & Silva, H. pyHRV: Development and evaluation of an open-source python toolbox for heart rate variability (HRV). In Proceedings of International Conference Electrical, Electronic and Computing Engineering (2019).
Camm, A. J. et al. Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Task force of the european society of cardiology and the north american society of pacing and electrophysiology. Circulation 93, 1043–1065 (1996).
Google Scholar
Shaffer, F. & Ginsberg, J. P. An overview of heart rate variability metrics and norms. Front. Public Health 5, 258 (2017).
Google Scholar
Quintana, D. S., Alvares, G. A. & Heathers, J. A. J. Guidelines for reporting articles on psychiatry and heart rate variability (GRAPH): Recommendations to advance research communication. Transl. Psychiatry 6, e803 (2016).
Google Scholar
Wallis, L. A., Healy, M., Undy, M. B. & Maconochie, I. Age related reference ranges for respiration rate and heart rate from 4 to 16 years. Arch. Dis. Child. 90, 1117–1121 (2005).
Google Scholar
Voss, A., Schulz, S., Schroeder, R., Baumert, M. & Caminal, P. Methods derived from nonlinear dynamics for analysing heart rate variability. Philos. Trans. A Math. Phys. Eng. Sci. 367, 277–296 (2009).
Google Scholar
Peng, C. K., Havlin, S., Stanley, H. E. & Goldberger, A. L. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5, 82–87 (1995).
Google Scholar
Rosseel, Y. lavaan: An R package for structural equation modeling. J. Stat. Softw. 48, 1–36 (2012).
Google Scholar
Oshri, A., Liu, S., Suveg, C. M., Caughy, M. O. & Goodgame Huffman, L. Biological sensitivity to context as a dyadic construct: An investigation of child-parent RSA synchrony among low-SES youth. Dev. Psychopathol. 35, 95–108 (2023).
Google Scholar
Bar-Haim, Y., Marshall, P. J. & Fox, N. A. Developmental changes in heart period and high-frequency heart period variability from 4 months to 4 years of age. Dev. Psychobiol. 37, 44–56 (2000).
Google Scholar
Feldman, R., Magori-Cohen, R., Galili, G., Singer, M. & Louzoun, Y. Mother and infant coordinate heart rhythms through episodes of interaction synchrony. Infant Behav. Dev. 34, 569–577 (2011).
Google Scholar
Trapletti, A., Hornik, K., LeBaron, B. & Hornik, M. K. Package ‘tseries.’ R project (2015).
Laborde, S., Mosley, E. & Thayer, J. F. Heart rate variability and cardiac vagal tone in psychophysiological research—Recommendations for experiment planning, data analysis, and data reporting. Front. Psychol. 8, 1–18 (2017).
Google Scholar
Aiken, L. S., West, S. G. & Reno, R. R. Multiple Regression: Testing and Interpreting Interactions (SAGE, 1991).
Shrout, P. E. & Bolger, N. Mediation in experimental and nonexperimental studies: New procedures and recommendations. Psychol. Methods 7, 422–445 (2002).
Google Scholar
Fox, J. & Weisberg, S. An R Companion to Applied Regression (SAGE Publications, 2018).
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. 57, 289–300 (1995).
Google Scholar
Cox, J. L., Holden, J. M. & Sagovsky, R. Detection of postnatal depression. Development of the 10-item Edinburgh postnatal depression scale. Br. J. Psychiat. 150, 782–786 (1987).
Spielberger, C. D. State-Trait Anxiety Inventory for Adults (STAI-AD) [Database record]. APA PsycTests. (1983).
Cohen, S., Kamarck, T. & Mermelstein, R. A global measure of perceived stress. J. health soc. behav. 24(4), 385–396 (1983).
link