Maternal heart rate variability at 3-months postpartum is associated with maternal mental health and infant neurophysiology

Maternal heart rate variability at 3-months postpartum is associated with maternal mental health and infant neurophysiology
  • Pearson, R. M. et al. Prevalence of prenatal depression symptoms among 2 generations of pregnant mothers: the Avon longitudinal study of parents and children. JAMA Netw. Open 1, e180725 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Riva Crugnola, C. et al. Mother-infant emotion regulation at three months: The role of maternal anxiety, depression and parenting stress. Psychopathology 49, 285–294 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Hakanen, H. et al. How maternal pre- and postnatal symptoms of depression and anxiety affect early mother-infant interaction?. J. Affect. Disord. 257, 83–90 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Slomian, J., Honvo, G., Emonts, P., Reginster, J.-Y. & Bruyère, O. Consequences of maternal postpartum depression: A systematic review of maternal and infant outcomes. Womens. Health 15, 1745506519844044 (2019).

    CAS 

    Google Scholar 

  • Chan, A. W., Reid, C., Skeffington, P. & Marriott, R. A systematic review of EPDS cultural suitability with Indigenous mothers: A global perspective. Arch. Womens. Ment. Health 24, 353–365 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Rajendra Acharya, U., Paul Joseph, K., Kannathal, N., Lim, C. M. & Suri, J. S. Heart rate variability: A review. Med. Biol. Eng. Comput. 44, 1031–1051 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Heiss, S., Vaschillo, B., Vaschillo, E. G., Timko, C. A. & Hormes, J. M. Heart rate variability as a biobehavioral marker of diverse psychopathologies: A review and argument for an “ideal range”. Neurosci. Biobehav. Rev. 121, 144–155 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Appelhans, B. M. & Luecken, L. J. Heart rate variability as an index of regulated emotional responding. Rev. Gen. Psychol. 10, 229–240 (2006).

    Article 

    Google Scholar 

  • Porges, S. W. Orienting in a defensive world: Mammalian modifications of our evolutionary heritage. A polyvagal theory. Psychophysiology 32, 301–318 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Thayer, J. F. & Lane, R. D. A model of neurovisceral integration in emotion regulation and dysregulation. J. Affect. Disord. 61, 201–216 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Krypotos, A.-M., Jahfari, S., van Ast, V. A., Kindt, M. & Forstmann, B. U. Individual differences in heart rate variability predict the degree of slowing during response inhibition and initiation in the presence of emotional stimuli. Front. Psychol. 2, 278 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thayer, J. F., Ahs, F., Fredrikson, M., Sollers, J. J. 3rd. & Wager, T. D. A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neurosci. Biobehav. Rev. 36, 747–756 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Benarroch, E. E. The central autonomic network: Functional organization, dysfunction, and perspective. Mayo Clin. Proc. 68, 988–1001 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • McEwen, B. S. & Gianaros, P. J. Stress- and allostasis-induced brain plasticity. Annu. Rev. Med. 62, 431–445 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McEwen, B. S. Stress, adaptation, and disease. Allostasis and allostatic load. Ann. N. Y. Acad. Sci. 840, 33–44 (1998).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Bester, M. et al. Characterizing the effect of demographics, cardiorespiratory factors, and inter-subject variation on maternal heart rate variability in pregnancy with statistical modeling: A retrospective observational analysis. Sci. Rep. 12, 19305 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kimmel, M. C. et al. Heart rate variability in late pregnancy: Exploration of distinctive patterns in relation to maternal mental health. Transl. Psychiatry 11, 286 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Garg, P. et al. Sequential analysis of heart rate variability, blood pressure variability and baroreflex sensitivity in healthy pregnancy. Clin. Auton. Res. 30, 433–439 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Eneroth-Grimfors, E., Westgren, M., Ericson, M., Ihrman-Sandahl, C. & Lindblad, L. E. Autonomic cardiovascular control in normal and pre-eclamptic pregnancy. Acta Obstet. Gynecol. Scand. 73, 680–684 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Moors, S. et al. Heart rate variability in hypertensive pregnancy disorders: A systematic review. Pregnancy Hypertens. 20, 56–68 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Oppenheimer, J. E., Measelle, J. R., Laurent, H. K. & Ablow, J. C. Mothers’ vagal regulation during the still-face paradigm: Normative reactivity and impact of depression symptoms. Infant Behav. Dev. 36, 255–267 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Smith, C. G. et al. Anxious parents show higher physiological synchrony with their infants. Psychol. Med. 52, 3040–3050 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ham, J. & Tronick, E. Infant resilience to the stress of the still-face: Infant and maternal psychophysiology are related. Ann. N. Y. Acad. Sci. 1094, 297–302 (2006).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Gunnar, M. R. & Donzella, B. Social regulation of the cortisol levels in early human development. Psychoneuroendocrinology 27, 199–220 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bush, N. R. et al. Effects of pre- and postnatal maternal stress on infant temperament and autonomic nervous system reactivity and regulation in a diverse, low-income population. Dev. Psychopathol. 29, 1553–1571 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Feldman, R. Sensitive periods in human social development: New insights from research on oxytocin, synchrony, and high-risk parenting. Dev. Psychopathol. 27, 369–395 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Braren, S. H. et al. Maternal psychological stress moderates diurnal cortisol linkage in expectant fathers and mothers during late pregnancy. Psychoneuroendocrinology 111, 104474 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Blair, C. & Raver, C. C. Individual development and evolution: Experiential canalization of self-regulation. Dev. Psychol. 48, 647–657 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ham, J. & Tronick, E. Relational psychophysiology: Lessons from mother-infant physiology research on dyadically expanded states of consciousness. Psychother. Res. 19, 619–632 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Wass, S. V. et al. Parents mimic and influence their infant’s autonomic state through dynamic affective state matching. Curr. Biol. 29, 2415-2422.e4 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Calkins, S. D., Perry, N. B. & Dollar, J. M. A biopsychosocial model of self-regulation in infancy. In Child Psychology: A Handbook of Contemporary Issues: Third Edition 3–20 (Taylor and Francis Inc., 2016).

  • Feldman, R. The neurobiology of mammalian parenting and the biosocial context of human caregiving. Horm. Behav. 77, 3–17 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Nazzari, S., Fearon, P., Rice, F., Molteni, M. & Frigerio, A. Maternal caregiving moderates the impact of antenatal maternal cortisol on infant stress regulation. J. Child Psychol. Psychiatry 63, 871–880 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Gunnar, M. R. Social regulation of stress in early child development. In Blackwell Handbook of Early Childhood Development vol. 663, 106–125 (2006).

  • Calkins, S. D. Caregiving as coregulation: Psychobiological processes and child functioning. In Biosocial Foundations of Family Processes (eds Booth, A. et al.) 49–59 (Springer New York, 2011).

    Chapter 

    Google Scholar 

  • Tronick, E., Mueller, I., DiCorcia, J., Hunter, R. & Snidman, N. A caretaker acute stress paradigm: Effects on behavior and physiology of caretaker and infant. Dev. Psychobiol. 63, 237–246 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Gabard-Durnam, L. & McLaughlin, K. A. Sensitive periods in human development: Charting a course for the future. Curr. Opin. Behav. Sci. 36, 120–128 (2020).

    Article 

    Google Scholar 

  • Hensch, T. K. Critical period plasticity in local cortical circuits. Nat. Rev. Neurosci. 6, 877–888 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Suga, A., Uraguchi, M., Tange, A., Ishikawa, H. & Ohira, H. Cardiac interaction between mother and infant: enhancement of heart rate variability. Sci. Rep. 9, 20019 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • DePasquale, C. E. A systematic review of caregiver-child physiological synchrony across systems: Associations with behavior and child functioning. Dev. Psychopathol. 32, 1754–1777 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Chen, J., Xiao, Y., Xu, B. & Zhang, D. The developmental trajectory of task-related frontal EEG theta/beta ratio in childhood. Dev. Cogn. Neurosci. 60, 101233 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Anderson, A. J. & Perone, S. Developmental change in the resting state electroencephalogram: Insights into cognition and the brain. Brain Cogn. 126, 40–52 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Begum-Ali, J. et al. Altered theta-beta ratio in infancy associates with family history of ADHD and later ADHD-relevant temperamental traits. J. Child Psychol. Psychiatry 63, 1057–1067 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Troller-Renfree, S. V. et al. Associations between maternal stress and infant resting brain activity among families residing in poverty in the U.S. Biol. Psychol. 108683 (2023).

  • Brandes-Aitken, A., Pini, N., Weatherhead, M. & Brito, N. H. Maternal hair cortisol predicts periodic and aperiodic infant frontal EEG activity longitudinally across infancy. Dev. Psychobiol. 65, e22393 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Goldstein, B. L. et al. Positive and negative emotionality at age 3 predicts change in frontal EEG asymmetry across early childhood. J. Abnorm. Child Psychol. 47, 209–219 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Smith, C. L., Diaz, A., Day, K. L. & Bell, M. A. Infant frontal electroencephalogram asymmetry and negative emotional reactivity as predictors of toddlerhood effortful control. J. Exp. Child Psychol. 142, 262–273 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Gartstein, M. A., Hancock, G. R., Potapova, N. V., Calkins, S. D. & Bell, M. A. Modeling development of frontal electroencephalogram (EEG) asymmetry: Sex differences and links with temperament. Dev. Sci. 23, e12891 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Hill, K. E. et al. Intergenerational transmission of frontal alpha asymmetry among mother-infant dyads. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 5, 420–428 (2020).

    PubMed 

    Google Scholar 

  • Brooker, R. J., Canen, M. J., Davidson, R. J. & Hill Goldsmith, H. Short- and long-term stability of alpha asymmetry in infants: Baseline and affective measures. Psychophysiology 54, 1100–1109 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mulligan, D. J., Palopoli, A. C., van den Heuvel, M. I., Thomason, M. E. & Trentacosta, C. J. Frontal alpha asymmetry in response to stressor moderates the relation between parenting hassles and child externalizing problems. Front. Neurosci. 16, 917300 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Young, H. & Benton, D. We should be using nonlinear indices when relating heart-rate dynamics to cognition and mood. Sci. Rep. 5, 16619 (2015).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Abney, D. H., daSilva, E. B., Lewis, G. F. & Bertenthal, B. I. A method for measuring dynamic respiratory sinus arrhythmia (RSA) in infants and mothers. Infant Behav. Dev. 63, 101569 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Pierce, L. J. et al. Association of perceived maternal stress during the perinatal period with electroencephalography patterns in 2-month-old infants. JAMA Pediatr. 173, 561–570 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brandes-Aitken, A. et al. Within-person changes in basal cortisol and caregiving modulate executive attention across infancy. Dev. Psychopathol. 1–14 (2021).

  • Hane, A. A. & Fox, N. A. Ordinary variations in maternal caregiving influence human infants’ stress reactivity. Psychol. Sci. 17, 550–556 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Friedman, B. H. & Thayer, J. F. Autonomic balance revisited: Panic anxiety and heart rate variability. J. Psychosom. Res. 44, 133–151 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Miller, J. G. et al. Heart rate variability moderates the effects of COVID-19-related stress and family adversity on emotional problems in adolescents: Testing models of differential susceptibility and diathesis stress. Dev. Psychopathol. 34, 1–12 (2021).

    Article 

    Google Scholar 

  • Schiweck, C., Piette, D., Berckmans, D., Claes, S. & Vrieze, E. Heart rate and high frequency heart rate variability during stress as biomarker for clinical depression. A systematic review. Psychol. Med. 49, 200–211 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Kogler, L. et al. Psychosocial versus physiological stress—Meta-analyses on deactivations and activations of the neural correlates of stress reactions. Neuroimage 119, 235–251 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Agorastos, A. et al. Vagal effects of endocrine HPA axis challenges on resting autonomic activity assessed by heart rate variability measures in healthy humans. Psychoneuroendocrinology 102, 196–203 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • McCraty, R. & Shaffer, F. Heart rate variability: New perspectives on physiological mechanisms, assessment of self-regulatory capacity, and health risk. Glob. Adv. Health Med. 4, 46–61 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Calkins, S. D. & Hill, A. Caregiver influences on emerging emotion regulation. In Handbook of Emotion Regulation vol. 229248, 229–248 (2007).

  • Gunnar, M. R. & Cheatham, C. L. Brain and behavior interface: Stress and the developing brain. Infant Ment. Health J. 24, 195–211 (2003).

    Article 

    Google Scholar 

  • Blair, C. Stress and the development of executive functions. In 37th Minnesota Symposium on Child Psychology: Developing Cognitive Control Processes: Mechanisms, Implications, and Interventions 145–180 (Wiley Online Library, 2014).

  • St John, A. M., Kao, K., Liederman, J., Grieve, P. G. & Tarullo, A. R. Maternal cortisol slope at 6 months predicts infant cortisol slope and EEG power at 12 months. Dev. Psychobiol. 59, 787–801 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Troller-Renfree, S. V. et al. Infants of mothers with higher physiological stress show alterations in brain function. Dev. Sci. e12976 (2020).

  • Abney, D. H., daSilva, E. B. & Bertenthal, B. I. Associations between infant-mother physiological synchrony and 4- and 6-month-old infants’ emotion regulation. Dev. Psychobiol. 63, e22161 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Busuito, A., Quigley, K. M., Moore, G. A., Voegtline, K. M. & DiPietro, J. A. In sync: Physiological correlates of behavioral synchrony in infants and mothers. Dev. Psychol. 55, 1034–1045 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lunkenheimer, E., Brown, K. M. & Fuchs, A. Differences in mother-child and father-child RSA synchrony: Moderation by child self-regulation and dyadic affect. Dev. Psychobiol. 63, 1210–1224 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McFarland, D. H., Fortin, A. J. & Polka, L. Physiological measures of mother-infant interactional synchrony. Dev. Psychobiol. 62, 50–61 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Somers, J. A., Luecken, L. J., McNeish, D., Lemery-Chalfant, K. & Spinrad, T. L. Second-by-second infant and mother emotion regulation and coregulation processes. Dev. Psychopathol. 1–14 (2021).

  • Carozza, S. & Leong, V. The role of affectionate caregiver touch in early neurodevelopment and parent–infant interactional synchrony. Front. Neurosci. 14 (2021).

  • Feldman, R., Singer, M. & Zagoory, O. Touch attenuates infants’ physiological reactivity to stress. Dev. Sci. 13, 271–278 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Feldman, R. Parent?infant synchrony and the construction of shared timing; physiological precursors, developmental outcomes, and risk conditions. J. Child Psychol. Psychiat. 48, 329–354 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Fox, N. A. & Reeb, B. C. Cortical Asymmetry. In Handbook of Approach and Avoidance Motivation 35–49 (Psychology Press, 2013).

  • Trevarthen, C. Lateral asymmetries in infancy: Implications for the development of the hemispheres. Neurosci. Biobehav. Rev. 20, 571–586 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Johnson, M. H. Interactive specialization: A domain-general framework for human functional brain development?. Dev. Cogn. Neurosci. 1, 7–21 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Nguyen, T., Hoehl, S., Bertenthal, B. I. & Abney, D. H. Coupling between prefrontal brain activity and respiratory sinus arrhythmia in infants and adults. Dev. Cogn. Neurosci. 58, 101184 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Levin, A. R., Méndez Leal, A. S., Gabard-Durnam, L. J. & O’Leary, H. M. BEAPP: The batch electroencephalography automated processing platform. Front. Neurosci. 12, 513 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gabard-Durnam, L. J., Mendez Leal, A. S., Wilkinson, C. L. & Levin, A. R. The harvard automated processing pipeline for electroencephalography (HAPPE): Standardized processing software for developmental and high-artifact data. Front. Neurosci. 12, 97 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Winkler, I., Haufe, S. & Tangermann, M. Automatic classification of artifactual ICA-components for artifact removal in EEG signals. Behav. Brain Funct. 7, 30 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Saby, J. N. & Marshall, P. J. The utility of EEG band power analysis in the study of infancy and early childhood. Dev. Neuropsychol. 37, 253–273 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Haegens, S. et al. Beta oscillations in the monkey sensorimotor network reflect somatosensory decision making. Proc. Natl. Acad. Sci. U.S.A. 108, 10708–10713 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bell, M. A. & Cuevas, K. Using EEG to study cognitive development: Issues and practices. J. Cogn. Dev. 13, 281–294 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Law, E. C. et al. Associations between infant screen use, electroencephalography markers, and cognitive outcomes. JAMA Pediatr. 177, 311–318 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Arns, M., Conners, C. K. & Kraemer, H. C. A decade of EEG theta/beta ratio research in ADHD: A meta-analysis. J. Atten. Disord. 17, 374–383 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Gasser, T., Bächer, P. & Möcks, J. Transformations towards the normal distribution of broad band spectral parameters of the EEG. Electroencephalogr. Clin. Neurophysiol. 53, 119–124 (1982).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Allen, J. J. B., Chambers, A. S. & Towers, D. N. The many metrics of cardiac chronotropy: A pragmatic primer and a brief comparison of metrics. Biol. Psychol. 74, 243–262 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Pham, T., Lau, Z. J., Chen, S. H. A. & Makowski, D. Heart rate variability in psychology: A review of HRV indices and an analysis tutorial. Sensors 21 (2021).

  • Gomes, P., Margaritoff, P. & Silva, H. pyHRV: Development and evaluation of an open-source python toolbox for heart rate variability (HRV). In Proceedings of International Conference Electrical, Electronic and Computing Engineering (2019).

  • Camm, A. J. et al. Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Task force of the european society of cardiology and the north american society of pacing and electrophysiology. Circulation 93, 1043–1065 (1996).

    Article 

    Google Scholar 

  • Shaffer, F. & Ginsberg, J. P. An overview of heart rate variability metrics and norms. Front. Public Health 5, 258 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Quintana, D. S., Alvares, G. A. & Heathers, J. A. J. Guidelines for reporting articles on psychiatry and heart rate variability (GRAPH): Recommendations to advance research communication. Transl. Psychiatry 6, e803 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wallis, L. A., Healy, M., Undy, M. B. & Maconochie, I. Age related reference ranges for respiration rate and heart rate from 4 to 16 years. Arch. Dis. Child. 90, 1117–1121 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Voss, A., Schulz, S., Schroeder, R., Baumert, M. & Caminal, P. Methods derived from nonlinear dynamics for analysing heart rate variability. Philos. Trans. A Math. Phys. Eng. Sci. 367, 277–296 (2009).

    ADS 
    PubMed 

    Google Scholar 

  • Peng, C. K., Havlin, S., Stanley, H. E. & Goldberger, A. L. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5, 82–87 (1995).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Rosseel, Y. lavaan: An R package for structural equation modeling. J. Stat. Softw. 48, 1–36 (2012).

    Article 

    Google Scholar 

  • Oshri, A., Liu, S., Suveg, C. M., Caughy, M. O. & Goodgame Huffman, L. Biological sensitivity to context as a dyadic construct: An investigation of child-parent RSA synchrony among low-SES youth. Dev. Psychopathol. 35, 95–108 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Bar-Haim, Y., Marshall, P. J. & Fox, N. A. Developmental changes in heart period and high-frequency heart period variability from 4 months to 4 years of age. Dev. Psychobiol. 37, 44–56 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Feldman, R., Magori-Cohen, R., Galili, G., Singer, M. & Louzoun, Y. Mother and infant coordinate heart rhythms through episodes of interaction synchrony. Infant Behav. Dev. 34, 569–577 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Trapletti, A., Hornik, K., LeBaron, B. & Hornik, M. K. Package ‘tseries.’ R project (2015).

  • Laborde, S., Mosley, E. & Thayer, J. F. Heart rate variability and cardiac vagal tone in psychophysiological research—Recommendations for experiment planning, data analysis, and data reporting. Front. Psychol. 8, 1–18 (2017).

    Article 

    Google Scholar 

  • Aiken, L. S., West, S. G. & Reno, R. R. Multiple Regression: Testing and Interpreting Interactions (SAGE, 1991).

    Google Scholar 

  • Shrout, P. E. & Bolger, N. Mediation in experimental and nonexperimental studies: New procedures and recommendations. Psychol. Methods 7, 422–445 (2002).

    Article 
    PubMed 

    Google Scholar 

  • Fox, J. & Weisberg, S. An R Companion to Applied Regression (SAGE Publications, 2018).

    Google Scholar 

  • Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. 57, 289–300 (1995).

    Article 
    MathSciNet 

    Google Scholar 

  • Cox, J. L., Holden, J. M. & Sagovsky, R. Detection of postnatal depression. Development of the 10-item Edinburgh postnatal depression scale. Br. J. Psychiat. 150, 782–786 (1987).

  • Spielberger, C. D. State-Trait Anxiety Inventory for Adults (STAI-AD) [Database record]. APA PsycTests. (1983).

  • Cohen, S., Kamarck, T. & Mermelstein, R. A global measure of perceived stress. J. health soc. behav. 24(4), 385–396 (1983).

  • link